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A conductivity tensor is calculated for a partially ionized gas subject to electric 
fields which are harmonic in space and time, and to a uniform magnetic field. The 
collisions between charged particles and neutral molecules are included in the 
theory in an approximate way by means of a simplified form of Boltzmann’s 
equation, as proposed by Bhatnagar, Gross and Krook. A simplified expression 
for the longitudinal component of the tensor is derived. Some applications of the 
results are mentioned, and will be described in detail in further papers. 

1. Introduction 
In  many of the problems of plasma physics, the properties of the ionized 

medium are conveniently summarized by conductivity functions, (T, one for 
each of the species of charged particles. These enable any calculation to be 
regarded simply as the solution of Maxwell’s equations together with Ohm’s 
law. For instance, one often refers to the ‘d.c. conductivity’; according to a crude 
calculation in which the collisions are represented by a simple drag force, this is 
(T = Ne2/nw. Here N is the number density, e the charge, rn. the mass of the 
particles; 1’ is their collision frequency. The magnetoionic theory (Ratcliffe 1959) 
may be formulated in terms of a conductivity. This time it is an ‘a.c. con- 
ductivity ’, and is a function of frequency; in the presence of an applied magnetic 
field it also acquires a tensor character. Even the theory of plasma oscillations, 
taking account of the thermal distribution of velocities, may be presented this 
way provided certain contours of integration are defined carefully so that 
Landau damping is not omitted. In this case the conductivity depends also on 
the wave number, k. It was just this conductivity which was used to discuss 
incoherent scattering of radio waves (Dougherty & Farley 1960; Farley, 
Dougherty & Barron 1961). (The quantity there called the ‘admittance’, Y ,  
is simply cr/e2.) 

The author and Dr D. T. Farley have recently encountered problems con- 
cerning partially ionized gases in which it is essential to include both the thermal 
motions and the collisions made by the charged particles with the neutral mole- 
cules. Examples include incoherent scattering in the lower ionosphere, and the 
stability of equatorial and auroral electrojets. In some cases, an external mag- 
netic field has to be included also. A proper calculation of the conductivity would 
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start with a Boltzmann’s equation (Chapman & Cowling 1952) for the distribu- 
tion function.f(x, v, t ) :  

where F is the macroscopic force, and the term on the right represents the 
collision integrals, the other notation is as usual, and summation over q is assumed. 
This has already been done for the case of d.c. fields (constant in both space and 
time) by Cowling (1945). However, it  appears to be very difficult to extend this 
work to include fields which oscillate rapidly in space and time. The standard 
method, due to Chapman and Enskog, for handling the Boltzmann equation, 
starts from the assumption that [afiat], is the dominating term in (1.1) and 
proceeds by iteration. If the frequency of oscillation of the field approaches the 
collision frequency, or if the wavelength is as small as the mean free path, such 
an iteration is unjustified. On the other hand, we may not wish to regard the 
collisions as a perturbation on the collision-free calcuIations which have already 
been carried out. 

To make progress in this intermediate case, the author has used a modified 
version of the simplified expression for [aflat], which has often been proposed in 
the literature. In this paper, this equation is discussed, and conductivity tensors 
are calculated and simplified so that they are in a form ready for use in the 
applications. The latter will be discussed in separate papers. 

During the final stages of preparation of this paper, the author’s attention was 
drawn to the paper by Lewis & Keller (1962)) in which a similar calculation is 
carried out, though by a somewhat different method. The results appear to be 
in agreement. 

2. Approximate kinetic equation for a partially ionized gas 
A number of writers (Kantrowitz & Petschek 1957; Bhatnagar, Gross & 

Krook 1954; Gross & Krook 1956; Deslodge & Matthysse 1960) have proposed 
that the simpler form 

[afiat], = - v(f -fmax) (3.1) 

be used for the right-hand side of (1.1). Here 11 is a collision frequency and fmax is 
a suitable Maxwellian distribution. Although some justification (see for instance 
Deslodge & Matthysse 1960) for an equation of this type can be given, it is best 
regarded as empirical. It leads to a relatively simpler mathematical analysis than 
the proper collision integral, while having a number of characteristics in common 
with it. For example a uniform but non-Maxwellian distribution tends to turn 
into a Maxwellian one in a time of order v-1. Equation (3.1) may be regarded as 
having the same status in the kinetic theory of plasmas as has the simple ‘friction’ 
term in the magnetoionic theory, and in fact the two are closely related. 

Care must be exercised in the choice of fmax.  In  problems where small perturba- 
tions about a uniform Maxwellian distribution f o  are considered, so that one 
writes f = fo+fi, where fi is harmonic in space and time, the choice fmax = f o  
suggests itself. In  this case the collision-free analysis needs only the formal 
modification of replacing the angular frequency w by w - i v ,  since the right-hand 
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side of (3.1) is just - vf1. For some purposes this is a good approximation, and 
has been suggested by various writers (Hagfors 1961; Renau, Camnitz & Flood 
1961). But, as pointed out by Bhatnagar et al. (1954)) this procedure is unsatis- 
factory because the kinetic equation (1.1) does not conserve particles locally, as 
may readily be seen by integrating over velocity space. The tendency for the 
plasma to relax towards a uniform Maxwellian distribution is thereby repre- 
sented in an exaggerated way since the equation requires particles to disappear 
where there is an excess and reappear where there is a deficiency, in physical space 
as well as in velocity space. 

Clearly fmax ought to be chosen as a Maxwellian distribution having the same 
total density in physical space as f itself rather than f,,. In  that case 

J [a f /a t ] , n3~  = o 
is identically satisfied provided I’ is independent of velocity, and the conservation 
of particles is ensured. Defining the number density in the usual way 

N(X, t )  = If(., v, t )  ~ ~ 2 1 ,  (2.3) 

with similar definitions for N,, and Nl in terms of f,, and f i ,  we have 

(3.3) 

This is equation (4) of Bhatnagar et aZ.’s paper. The final term is one which does 
not seem to have been included by other writers. It can in some circumstances be 
of the same order as the term - vfl, and as we shall see in the applications, it  can 
make successful a theory which would otherwise fail. However, it does make the 
analysis more complicated, as Nl has to be expressed as an integral over f i ,  so 
that Boltzmann’s equation reassumes the character of an integral equation. 

By taking moments of Boltzmann’s equation in the standard way, the equa- 
tions of momentum and energy can easily be constructed. It is found that the 
collision term does contribute to the rates of change of momentum and energy for 
each species of charged particle, but this is to be expected for a partially ionized 
gas as momentum and energy are being exchanged with the neutral molecules, 
the latter being assumed at  rest. In fact one finds that the rate of loss of momen- 
tum is given by mvu per particle where u is the mean velocity for that species. 
This is a most desirable feature of our kinetic equation, since it is this expression 
that is used in the magnetoionic theory, which is entirely successful in dealing 
with the propagation of radio waves even if the collision frequency is comparable 
with the wave frequency. If, on the other hand, we were attempting to represent 
say electron-electron collisions by an equation such as (2.1), the modification of 
the equations of momentum and energy would be just as objectionable as that 
of the equation of continuity; this could be avoided by defining fmax to be a 
Maxwellian distribution with the same mean velocity, temperature and density 
as f,  not just with the same density. In  that case there would be still further 
terms in (3.3). 
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3. Formal expression for the conductivity tensor 

equation (1 .1)  explicitly, using (2 .3 )  
To calculate the conductivity for a single species, we write Boltzmann’s 

where E and B are the electric and magnetic fields, and f o  is the Maxwellian 
distribution 

fo(v) = No ~- exp [ - mv2/2KT]. (3.5) 
[2&]% 

Following the usual method (Bernstein 1958; Farley et al. 1961) of lineariza- 
tion with the perturbations harmonic in space and time, we have f = f o  + fl, 
N = N,+Nl, B = B,+B,, where fit N,, B,, and the whole of E, are small 
quantities with a factor 

assumed, w and k being constants. B, is a uniform externally applied field. 
Since f o  is isotropic, the term (v x B), afo/avq is zero, and we have 

exp [i(wt - k. x)] (3.3) 

(3.4) 

9% (3 .5)  

i (w-iv-k.v)f ,+-(vxB e ) ~ af 1 = - - E  e afo - + L ’ - f o .  Nl 
mc O q a V ,  m qav,  No 

Introduce the abbreviation 

for the left-hand side of this equation. 9 is in general a differential operator in 
velocity space, which also involves w ,  I!, k and Q, where 

!2 = eB,/mc (3-6) 

is the gyro frequency. In  the special case when B, = 0 , 9  is simply an algebraic 
factor. Then a formal solution of (3.5) is 

The form taken by 9-l will be discussed later; for the present we note that it 
operates on f o  and 2fo/av+, but it commutes with E or Nl since these are constants 
so far asvelocity space is concerned. Nevertheless, (3 .7 )  is not by itself an explicit 
solution of (3.4) since we have 

Nl = If, (v’) d3w’, (3.8) 

where the prime merely indicates a dummy variable of integration to be distin- 
guished from v in (3 .7) .  Integrating (3 .7)  over velocity, and relabelling v as v’, 
we find 

Solving for N,, 

a result which may now be substituted back into (3 .7)  to give an explicit expres- 
sion for fl(v). We may now calculate the electric current density 

9 

j = eSflvd3v. 
Fluid Mech. 16 
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As this is linearly dependent on the components of E we may write 

and our conductivity tensor is (combining (3.7) and (3.9)) 

Here we have used the relation afo/av, = -mv,f,/KT, satisfied by the Maxwell 
distribution. We note that 9-l does not in general commute with functions of 
the components of v, so that one must preserve the order of factors in the inte- 
grands. The prime introduced earlier has been discontinued as the integrations 
now appear quite separately. 

We observe that the first term within the brackets in (3.10) is just what would 
be obtained from the collision-free results by the simple substitution o) --f o) - iv as 
mentioned in $3 .  The second, and more complicated, term arises from the 
modification of fmax required to preserve the equation of continuity. 

It may be asked at this point whether the denominator of the fraction appearing 
in (3.10) can ever vanish; for if it  can, we should infer that a new phenomenon of 
resonance has arisen from our collision term in Boltzmann's equation. This would 
clearly be surprising. In  the case of a Maxwellian plasma it is readily shown that 
the denominator can vanish only for waves which decay in time. This means 
that any current present initially will decay if no electric field is applied, and it 
also ensures that all components of the conductivity satisfy the usual conditions 
(the Kramers-Kronig relations) expressing the principle of causality. The formal , 

proof is given at  the end of $ 7 .  
To proceed with the evaluation of (3.10) we must first> give expressions for 

9-19, where g is a typical function of V. This is much easier for the case of no 
magnetic field than for non-zero field; so while the former case is contained in the 
latter, it  is useful to devote a little space to the field-free case, in which the 
essential points appear more clearly. 

4. Conductivity tensor in the absence of a magnetic field 
When B, = 0, a glance at (3.4) and (3.5) shows that the solution of an equation 

such as 

f - 9-1g = -* 
9 

1 -  % ( W - i V -  k.vj. is 

We may then take k = (0, 0, k) without loss of generality, and consider all the 
integrals appearing in (3.10), using a Maxwellianf, as in (3.2). The integrations 
over v, and vy may be carried out at once, and one finds that wpq is diagonal, the 
remaining elements vanishing asf, is an even function. For the same reason, the 
second term of (3.10) vanishes in the case of the 'transverse' components gzx 
and gyy. These are therefore given by the simple procedure of modifying the 
frequency mentioned in the last section, starting from results given, for example, 
in Appendix I of Dougherty & Parley (1960). This is as one would expect: the 
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last term of (3.10) arose from considering the equation of continuity, but this is 
irrelevant for purely transverse motions. 

It remains to consider the longitudinal component, gZz. Here we introduce 
some dimensionless variables similar to those employed by Dougherty & Farley 
(1960) and Farley et ul. (1961), by regarding (BKT/m)& as a typical velocity. 
Thus we define 

(4.1") 

as normalized frequency, collision frequency and particle velocity, and a 
normalized conductivity 

y = (KTk2/No e 2 0 )  Q. (4.3) 

I n  these terms the longitudinal component of (3.10) becomes 

The range of integration in each of these integrals is of course [ - 00, 001, but we 
must follow the Landau procedure in the choice of contour in the complex 7-plane. 
With the present sign convention, this means that the contour is the real axis 
if Y(0 - i$) < 0, but is inde,nted upwards if Y(0 - i$) > 0, so as to  lie above the 
singularity dy = O - i $ .  In  other words, the contour is the real axis except for 
waves which decay faster than ecVt. 

Further simplification of (4.4) is achieved by defining a function 

where the path of integration for the first integral obeys the convention just 
described. This function is just Z( - 6) where Z is the function tabulated by 
Fried & Conte (1961). It is readily shown that 

and 

so that all the integrals in (4.4) can be put in terms of G. On doing this, the 
expression for yzc finally reduces to 

We note that the apparent singularity in yzc a t  0 = 0 (see (4.4)) disappears on 
account of the cancellation of some of the terms, a point which becomes signi- 
ficant in the applications. 

9-2 
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5. Conductivity tensor in the presence of a magnetic field 
When B, + 0, the solution of an equation such as 

W l  = g(v), (5.1) 

as required by (3.10) becomes much more difficult. Fortunately it has essentially 
been done already, by Bernstein (1958) and others. Our present requirements 
merely amount to new choices of g(v) and the modification of w to become w - iv. 
We shall find it convenient to adopt the method and notation of our earlier 
derivation for the case of a collision-free plasma in a magnetic field (Farley et al. 
1961, Appendix). There the operator was regarded as a time derivative 
following the unperturbed orbit of a particle in phase space. We can do the same 
here; i t  being realized that ‘unperturbed orbit’ continues to mean the orbit of a 
particle in the field B, without collisions, as the collisions have been included in 
(5.1) by the modification of w. The earlier derivation gives at  once 

(5.2) 

Here v(~) is the velocity of a particle at a time t earlier than when it has a specified 
velocity v, assuming that it travels along the unperturbed orbit and p(t) is a 
certain vector characteristic of the unperturbed orbit and also of k. The solution 
of our equation may be regarded as an accumulation of perturbations over the 
previous history of the particle and the exponential factor is a transfer function 
(or integrating factor) representing the influence of conditions at time t earlier. 
Equivalently, the exponential factor may be regarded as a Green’s function and 
the unperturbed orbits are characteristic curves of the differential equations. 
We have tacitly assumed that no perturbations are present in the infinite past, 
but this is indeed the case if the perturbing field is switched on adiabatically and 
that is known to be equivalent to Landau’s rule for determining the path of 
integration in the case B, = 0 (see 3 4). 

The connexion between this solution of (5.1) and Bernstein’s (1958) integrating 
factor is shown explicitly by Renau et al. (1961). 

To give actual expressions for v(0, p ( t ) ,  and to handle concisely the vector or 
tensor character of the functions which, according t o  (3.10)’ play the part of g, 
it  is convenient to introduce ‘ circularly polarized ’ co-ordinates, as in Farley et al. 
(1961). These are ( X ~ , X ~ , X - ~ )  defined by 

xi1 = (z & i y ) p ’  xo = 2, (5.3) 

where (x,y,z) for the purposes of this definition are Cartesian axes with 0, 
parallel to 23,. The suffices 1,0 ,  - 1 will always be denoted by Greek letters, and 
the summation convention does not apply to them. For y = 0, formulae are to 
be interpreted by taking the limit y + 0 where necessary. Then quoting again 
from the earlier paper, 

( 5 4  $) = 2, eiyc2t, 
Y Y  

pY( t )  = k,[e-iYnt - I]/( - i yQ) ,  (5.5) 
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Q being the gyro-frequency e B,/mc. We may, without loss of generality, choose 
k,  = k-, = ksina/25, E, = E COSCI, c being the angle between k and B,. 

It must also be noted that the scalar product of two vectors A and B is 
2 A _ ,  B, in these co-ordinates. We therefore obtain the tensor component CT,,,~ of 

(3.20) by replacing vD, vuy by v,,, v- ,~ .  We now apply (5.2) in turn to  the various 
integrals required in (3.10). 

S.'f, d3v = Jv lomj0(v) exp [ - i ( w  - i l l )  t + i p .  v] dt d3u 

after noting that v@) and v have the same amplitude so thatf, is the same at each. 
But for the Maxwellian distribution 

Y 

( a )  

(5.6) 

so that exp [ - i (w  - i l l )  t - p2KT/3m] dt, (5.7) 

and we note 

(5.8) p2 = 2k%2-2( 1 - cos Qt) sin2 CI + t2E2 cos2 a. 

d 
= - ifl __ [e-~~ET/2m 1, (using (5.6) again) 

O aP-A 

a similar procedure applies; the only difference resulting from the presence of 
21-,, after the operator L2-l instead of before it, is that we need to evaluate 
D-1z@,f0(v) = g - l v - ,  e-iflntfo(v), so that a factor ec ipnf  is introduced. Hence 

D-1(v-J0) d3u = ___ iNoKT IOmp-, exp [ - i ( w  - i v  + pQ) t - p 2 K T / 2 m ]  dt. I wy1. 
(5.10) 

(d) Finally, we have 

W ( V - , f , )  d3v 

(5.11) 
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using (5.6) as before, this time involving second derivatives with respect to 
components of p. 

Equations (3.10), (5.5) and (5.7)-(5.11) summarize the means by which vAll may 
be calculated in these co-ordinates; the general result is of formidable complexity. 
Fortunately, the applications considered so far call for Iess information than is 
contained in these equations, and considerable simplification is available. 

6. Zero temperature limit 
Here, we ask whether our formulae reduce to the familiar a.c. conductivity 

used in magnetoionic theory, even if a magnetic field and collisions are included. 
We allow T to tend to zero, so thatf, becomes a delta function. Equation (3.10) 
shows that the large bracket should contain a part proportional to T, together 
with terms involving higher powers of T which may be neglected in the limit. 
The first term in the bracket is just the integral evaluated in (5.1 I) and so after 
cancelling KT, we have a contribution 

No e2 
vhp = lom exp [ - i ( w  - iv + pun)] sAhp dt = ~- -- SA,,,. (6.1) 

772 mi(o - iv + pun) 

The last step is valid only if Y ( w  -it,) < 0, but as we remarked earlier, the 
Landau prescription requires us to calculate G for this domain first and then 
extend the result by analytic continuation. Hence (6.1) is valid for all the complex 
w-plane. 

The remainder of (3.10) gives no contribution as each of the integrals appearing 
in the numerator of the fraction is proportional to T ,  so giving a term proportional 
to T 2  (see (5.9)-(5.10)). So in this limit, the final term of (3.3), which we added to  
maintain the equation of continuity, leads in the end to no contribution and (6.1) 
is the complete expression. We note that it is diagonal. 

It is readily verified that (6.1) is indeed the conductivity of a cold partially 
ionized gas. For if u is the (Lagrangian) velocity vector for the species under 
consideration, the equation of motion is 

mu = -wwu+e E +  - u x  B, 

to the first order; assuming time dependence exp(iwt) and translating to the 
(1,0, - 1)  co-ordinates this becomes 

( c  l )  

t? 
lLA(iW + 1’ + ihQ) = E,. m 

Hence 

We thus have a diagonal conductivity tensor which is in fact the same as (6.1), 
on account of the properties of the Kronecker 6. Therefore if the limit T + 0 is 
taken, the general results must reduce to those of the familiar magneto-ionic 
theory, or its generalizations if more than one species is included. 
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7. The longitudinal conductivity 

for which k is along the z-axis. I n  terms of our present axes it is therefore 
By the longitudinal component of Q we mean czz evaluated in Cartesian axes 

= k-' 3 k-, k,  cA,j  (7.1) 

and is the analogue of the quantity calculated in 9 4 for no magnetic field. There 
are several applications for which the full Maxwell equations can be replaced by 
simple electrostatics to very good approximation in which case only caz is 
relevant, as described, for example by Farley et aE. (1961). 

Referring to  equation (3.10), we observe that we shall need to evaluate 

s k-, It', .@-yo d3v, 3 k, t /P1(?t . -P  to) d3t1 and 3 Ice, kPJvA 2P1(~- , f0)  d3v. 
A .  /I A, P 

(7.2) 
For the first of these, we use (5.9) and the fact that 

1 sin Qt 
X k - , p ,  = k . p  = k2 sin2a---+tcos2a (using (5 .5 ) ) ,  
A [ Q  

d 
dt 

- - ( L  - zp 2 ) (using(5.5)). 

For the second, we use (5.10), and 
eWX- 1 

k, p-, = X k, k-, ___ e-ipcblt , 
Ll B ipcn 

d 
= C p , k - ,  = k . p  = -(ap2). , at 

Hence the first two expressions in (7.2) are in fact both equal to 

the last step involving an integration by parts, using p(0) = 0. 
The third expression in (7.3) can be treated similarly, starting from (5.11) and 

involving two integrations by parts (a more cumbersome derivation of this last 
result appears a t  the end of the appendix of the paper by Farley et al. 1961); the 
result is 

where I is the integral appearing in (7.3), so we may also rewrite (5.7) as 

(7.4) No(w - iv) [i + (w - iv) 13, 

p-y0  d3v = No I .  (7 5 )  

On combining equations (3.10), (7.1)-(7.5) and noting that some terms cancel 
in a way analogous to the step from (4.4) to (4.6), we find 

No e2 [i + (w - iv) I] w 
vzz = Zi'Tk2 

1 - VI (7.6) 
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On making the same normalizations as for no magnetic field, namely equations 
(4.3) and (4.3)’ with the addition of a normalized gyrofrequency 

we find 

(7 .7)  

where J is the ‘normalized Gordeyev Integral’ 

J(0 - i+, Q,, a )  = exp [ - i(O - i$) t - Q,+ sin2 a sin2 (&&) - it2 cos2 a] dt, (7.9) 
J O r n  

so J has the same meaning as in Farley et al. (1961), equation (7 .3) .  
Comparing with (4.6) we see that iJ plays the same role as G in the case of no 

field, and it is readily shown that the two are indeed equal in the limit Q, -+ 0. 
Equation (7.8) is the final form of our result, and has been found to be a 

convenient starting point for two quite separate applications concerned with 
ionospheric physics; these are reported in separate papers (Dougherty & Parley 
1963; Parley 1963 b )  on incoherent scatter and electrojet stability respectively. 
A letter (Farley 1963a) summarizing the latter has already appeared. 

It is now easy to prove that yB5 has no singularity for Y ( w )  < 0. Since J is an 
analytic function, the only question is whether the denominator of (7.8), 1 - $J,  
can vanish when o, and therefore 0, is in the lower half plane. As this would be 
synonymous with the vanishing of the denominator in (3.10)) we shall in fact 
establish that all components of Q are analytic in the lower half plane, so that 
any singularities correspondonly to decaying waves, aproperty we quoted without 
proof in 9 3. 

are real and 
9 > @ > 0. Using (7-9) we have 

If Y ( 0 )  < 0, O - i $  may be written t - i ~ ,  where 6 and 

so  
and @J = 1 is impossible. 

IW(J)I < @/9 < 1’ 

The work leading to this contribution was performed while the author was a 
guest worker at the Jicamarca Radio Observatory, Lima, Peru, during July- 
September 1962. The Jicamarca Observatory is a joint project of the United 
States National Bureau of Standards and the Instituto Geofisico del Perk 
I wish to thank Dr D. T. Farley, of Jicamarca Observatory, for many helpful 
discussions. 
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